

GROWTH REQUIREMENTS

- Organisms use a variety of **nutrients** for their energy needs and to build organic molecules and cellular structures
- Most common nutrients contain necessary elements such as carbon, oxygen, nitrogen, and hydrogen
- Microbes obtain nutrients from variety of sources

GROWTH REQUIREMENTS

- Nutrients: Chemical and Energy Requirements
 - Sources of carbon, energy, and electrons
 - Organisms classified into two groups based on source of carbon
 - · Autotrophs—use inorganic carbon (ie carbon dioxide)
 - · Heterotrophs—use catabolic process to obtain carbon from outside source
 - Organisms classified into two groups based on source of energy
 - Chemotrophs—acquire energy from redox reactions
 - · Phototrophs—acquire energy from light

		Energy	y source
		Light <i>(photo-)</i>	Chemical compounds (chemo-)
source	Carbon dioxide (auto-)	$\label{eq:photoautotrophs} \\ \bullet \mbox{Plants, algae, and cyanobacteria} \\ use H_2O as an electron source to \\ reduce CO_2, producing O_2 as a \\ by-product \\ \bullet \ Green sulfur bacteria and purple \\ sulfur bacteria use H_2S as an \\ electron source; they do not \\ produce O_2 \\ \end{array}$	Chemoautotrophs • Hydrogen, sulfur, and nitrifying bacteria, some archaea
Carbon	Organic compounds (hetero-)	Photoheterotrophs • Green nonsulfur bacteria and purple nonsulfur bacteria, some archaea	Chemoheterotrophs • Aerobic respiration: most animals, fungi, and protozoa, and many bacteria • Anaerobic respiration: some animals, protozoa, bacteria, and archaea • Fermentation: some bacteria, yeasts, and archaea

Growth Factor	Function
Amino acids	Components of proteins
Cholesterol	Used by mycoplasmas (bacteria) for cell membranes
Heme	Functional portion of cytochromes in electron transport system
NADH	Electron carrier
Niacin (nicotinic acid, vitamin B ₃)	Precursor of NAD ⁺ and NADP ⁺
Pantothenic acid (vitamin B ₅)	Component of coenzyme A
Para-aminobenzoic acid (PABA)	Precursor of folic acid, which is involved in metabolism of one- carbon compounds and nucleic acid synthesis
Purines, pyrimidines	Components of nucleic acids
Pyridoxine (vitamin B ₆)	Utilized in transamination synthe- ses of amino acids
Riboflavin (vitamin B ₂)	Precursor of FAD
Thiamine (vitamin B ₁)	Utilized in some decarboxylation reactions

Λ

GROWTH REQUIREMENTS

- Associations and Biofilms
- Organisms live in association with different species
- Antagonistic relationships a microbe harms another organism
- Synergistic relationships members of an association receive benefits that exceed those that
 would result if each lived by itself
- Symbiotic relationships organisms become interdependent and rarely live outside the relationship

TABLE 6.2 Clinical Specimens and the Methods Used to Collect Them Vector		
Type or Location of Specimen	Collection Method	
Skin, accessible membrane (including eye, outer ear, nose, throat, vagina, cervix, urethra) or open wounds	Sterile swab brushed across the surface; care should be taken not to contact neighboring tissues	
Blood	Needle aspiration from vein; antico- agulants are included in the specimen transfer tube	
Cerebrospinal fluid	Needle aspiration from subarachnoid space of spinal column	
Stomach	Intubation, which involves inserting a tube into the stomach, often via a nostril	
Urine	In aseptic collection, a catheter is in- serted into the bladder through the ure- thra; in the "clean catch" method, initial urination washes the urethra, and the specimen is midstream urine	
Lungs	Collection of sputum either dislodged by coughing or acquired via a catheter	
Diseased tissue	Surgical removal (biopsy)	

CULTURING MICROORGANISMS

- Contain substances that either favor the growth of particular microorganisms or inhibit the growth of unwanted ones
 A medium can become a selective
- medium when a single crucial nutrient is left out of it
- Used to culture organisms with known nutritional needs

Selective Medium (@ right) favoring fungal growth but inhibiting bacterial growth

<text><list-item><list-item><list-item><section-header><section-header><text>

CULTURING MICROORGANISMS

- Culture Media
- Enrichment media
 - · Use of a selective medium to increase the numbers of a chosen microbe to observable levels
 - · May require a series of cultures to enrich for the desired microbe
 - · Cold enrichment used to enrich a culture with cold-tolerant species

<section-header><section-header><section-header><section-header><section-header><section-header>

