

Aetric Unit abbreviation)	Meaning of Prefix	Metric Equivalent	U.S. Equivalent	Representative Microbiological Application of the Unit
Meter (m)	_,	1 m	39.37 in (about a yard)	Length of pork tapeworm, Taenia solium (e.g., 1.8–8.0 m)
Decimeter (dm)	1/10	0.1 m = 10 ⁻¹ m	3.94 in	_b
Centimeter (cm)	1/100	0.01 m = 10 ⁻² m	0.39 in; 1 in = 2.54 cm	Diameter of a mushroom cap (e.g., 12 cm)
Millimeter (mm)	1/1000	0.001 m = 10 ⁻³ m	-	Diameter of a bacterial colony (e.g., 2.3 mm); length of a tick (e.g., 5.7 mm)
Micrometer (µm)	1/1,000,000	0.000001 m = 10 ⁻⁶ m	-	Diameter of white blood cells (e.g., 5-25 µm)
Nanometer (nm)	1/1,000,000,000	0.000000001 m = 10 ⁻⁹ m	-	Diameter of a poliovirus (e.g., 25 nm)

Type of Microscope	Typical Image	Description of Image	Special Features	Typical Uses
Light Microscopes		Useful magnification 1× to 2000×; resolution to 200 nm	Use visible light; shorter, blue wavelengths provide better resolution	
Bright field		Colored or clear specimen against bright background	Simple to use; relatively inexpensive; stained specimens often required	To observe killed stained specimens and naturally colored live ones; also used to count microorganisms
Dark field	-	Bright specimen against dark background	Uses a special filter in the condenser that prevents light from directly passing through a specimen; only light scattered by the specimen is visible	To observe living, colorless, unstained organisms
Phase contrast	٢	Specimen has light and dark areas	Uses a special condenser that splits a polar- ized light beam into two beams, one of which passes through the specimen, and one of which bypasses the specimen; the beams are then rejoined before entring the oculars; contrast in the image results from the interactions of the two beams	To observe internal structures of living microbes
Differential inter- ference contrast (Nomarski)	- CP	Image appears three-dimensional	Uses two separate beams instead of a split beam; false color and a three-dimensional effect result from interactions of light beams and lenses; no staining required	To observe internal structures of living microbes
Fluorescence	"to:	Brightly colored fluores- cent structures against dark background	An ultraviolet light source causes fluorescent natural chemicals or dyes to emit visible light	To localize specific chemicals or structures; used as an accurate and quick diagnostic tool for detection of pathogens
Confocal	3	Single plane of struc- tures or cells that have been specifically stained with fluorescent dyes	Uses a laser to fluoresce only one plane of the specimen at a time	Detailed observation of structures of cells within communities

TABLE 4.2 Comparison of Types of Microscopes (Continued) Type of Microscope Typical Image Description of Image Special Features Use electrons traveling as waves with short wavelengths; require specimens to be in a vacuum, so cannot be used to examine living microbes Electron Microscopes Typical magnification 1000× to 100,000×; resolution to 0.001 nm Monotone, two-dimensional, highly magnified images; may be color enhanced Produces two-dimensional image of ultrastructure of cells To observe internal ultra-structural detail of cells and observation of viruses and small bacteria Transmission Yuis 00 Scanning Monotone, three-dimensional, surface images; may be color enhanced Produces three-dimensional view of the surface of microbes and cellular structures To observe the surface details of structures ()Magnification greater than 100,000,000× with resolving power greater than that of electron Probe Microscopes Uses microscopic probes that move over the surface of a specimen microscopes Measures the flow of electrical current between the tip of a probe and the specimen to produce an image of the surface at atomic level To observe the surface of objects; provide extremely fine detail, high magnifica-tion, and great resolution Scanning tunneling Individual molecules and atoms visible Atomic force Individual molecules and atoms visible Measures the deflection of a laser beam aimed at the tip of a probe that travels across the surface of the specimen To observe living speci-mens at the molecular and atomic levels

Classification and Identification of Microorganisms

Linnaeus and Taxonomic Categories

- Current taxonomy system began with Carolus Linnaeus
 - His system classified organisms based on characteristics in common
 - Grouped organisms that can successfully interbreed into categories called species
 - Used binomial nomenclature

21

Classification and Identification of Microorganisms

- Linnaeus and Taxonomic Categories
 - Linnaeus proposed only two kingdoms
 - Later taxonomic approach based on five kingdoms
 - Animalia, Plantae, Fungi, Protista, and Prokaryotae
 - Linnaeus's goal was to classify organisms in order to catalog them
 - Modern goal is to understand relationships among organisms
 - Goal of modern taxonomy is to reflect phylogenetic hierarchy
 - Greater emphasis on comparisons of organisms' genetic material led to proposal to add domain

Classification and Identification of Microorganisms

Domains

- Carl Woese compared nucleotide sequences of rRNA subunits
- Proposal of three domains as determined by ribosomal nucleotide sequences
 - Eukarya, Bacteria, and Archaea
- Cells in the three domains also differ with respect to many other characteristics

Classification and Identification of Microorganisms

Taxonomic and Identifying Characteristics

- Physical characteristics
- Biochemical tests
- Serological tests
- Phage typing
- Analysis of nucleic acids

25

Classification and Identification of Microorganisms

Taxonomic and Identifying Characteristics

- Physical characteristics
 - Can often be used to identify microorganisms
 - Protozoa, fungi, algae, and parasitic worms can often be identified based only on their morphology
 - Some bacterial colonies have distinct appearance used for identification

Classification and Identification of Microorganisms

- Taxonomic and Identifying Characteristics
 - Serological tests
 - Serology-study of serum (liquid portion of blood after clotting factors removed)
 - Many microorganisms are antigenic
 - Trigger immune response that produces antibodies
 - Serum is an important source of antibodies
 - Antibodies can be isolated and bind to the antigens that triggered their production

Classification and Identification of Microorganisms

- Phage typing
- Bacteriophage (phage)—virus that infects bacteria
- Phages are specific for the host they infect
 Phage typing is based on this specificity

30

29

Classification and Identification of Microorganisms

- Taxonomic and Identifying Characteristics
 - Analysis of nucleic acids
 - Nucleic acid sequence can be used to classify and identify microbes

Classification and Identification of Microorganisms

- Taxonomic Keys
 - Dichotomous keys
 - Series of paired statements where only one of two "either/or" choices applies to any particular organism
 - Key directs user to another pair of statements or provides name of organism

